

HIGH-PURITY STANDARDS

Application of Laser Induced Breakdown Spectroscopy to Quantify Beryllium Concentration in Soil

NEMC 2017 Kelsey Culbertson

- Introduction
- Objectives
- Experimental Design
- Results
- Method Evaluations and Conclusions
- Future Research

HIGH-PURITY STANDARDS Order online at www.highpuritystandards.com or call toll free 866-767-4771

- Introduction
- Objectives
- Experimental Design
- Results
- Method Evaluations and Conclusions
- Future Research

Beryllium manufacturing

- a lightweight metal with
 - excellent heat conductivity
 - good electrical insulation
 - high tensile strength
- Used in nuclear operations, aluminum manufacturing, electronics, space exploration, mining, etc.

Beryllium Contamination

- In the 20th century Be was heavily utilized by the United States Atomic Energy Commission
- The U.S. Department of Energy has several legacy sites across the country that are eligible for FUSRAP due to beryllium contamination
- Monitoring underway by USDOE, USACE, EPA and state health departments
- Estimated cost to remediate 1 beryllium site: 600K-86M dollars

Handford Site, Washington

Photos Courtsey of: wmsym.org

Rt.com

Beryllium Brush Co, Luckey, OH

GH-PURITY STANDARDS Order online at www.highpuritystandards.com or call toll free 866-767-4771

Beryllium Exposure Limits

GH-PUR

Be is toxic due to it's high retention in mammalian tissues leading to cardiac strain, heart disease, beryllium sensitization (BeS) and chronic beryllium lung disease (CBD) in humans

-Mode of exposure: inhalation of Be aerosols

Agency	Permissible Exposure Limit (PEL)	Time Weighted Average (TWA)
DOE	0.2 μg/m ³ 0.2 μg/100 cm ²	Air Surface
OSHA	2 μg/m ³	8 hours
ACGIH	1 µg/m ³	15 minutes

Monitoring Beryllium

HIGH-PURITY STANDARDS

Challenges

- Variety of digestion protocols and methods
 - Results are dependent upon the digestion method
- Time consuming
- Not available for field analysis
- Suitable BeO reference material not readily available

Laser Induced Breakdown Spectrometer

Direct solid measurement technique

Developing a Certified Reference Material (CRM)

- Currently <u>no</u> existing soil based beryllium reference material designed specifically for LIBS analysis
 - makes it difficult to evaluate digestion and analysis methods

*There is an urgent need for standardization of digestion methods

Developing a Certified Reference Material (CRM)

- Follow ISO Guide 34 and ISO 17025 guidelines
- 1. Detailed, traceable and consistent sample preparation
- 2. Homogeneity testing
- 3. Stability assessment

- Introduction
- Objectives
- Experimental Design
- Results
- Method Evaluations and Conclusions
- Future Research

Objectives

- Evaluate HPS's ability to produce soil samples spiked with BeO
- Evaluate the accuracy and precision of LIBS in determining Be concentration in soil

- Introduction
- Objectives
- Experimental Design
- Results
- Method Evaluations and Conclusions
- Future Research

Sample Manufacturing Process

Spiking method developed in house

HIGH-PURITY

Packaging and Shipping

HIGH-PURITY STANDARDS

Digestion and Analysis

•Digestion performed using Milestone ETHOS UP Microwave digestion system

- EPA3052 "Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices"
- Digestion reagent: 10 mL of HNO3 and 5 mL HF

•Analysis performed with Perkin Elmer ICP-OES Optima 5300

- Introduction
- Objectives
- Experimental Design
- Results
- Method Evaluations and Conclusions
- Future Research

ICP-OES Analysis

-Initial analysis revealed significant spectra interference, likely due to Ti

-Prior to data processing Be recovery ~65% for all samples, after baseline adjustment Be recovery ~95%

ICP-OES Analysis

Calibration curve from ICP-OES data for all samples calculated via method of standard addition

HIGH-PURITY STANDARDS Order online at www.highpuritystandards.com or call toll free 866-767-4771

ICP-OES Analysis

Calculated Concentrations				
ID	µg/g	Recovery		
50-1	46.151	100%		
50-2	47.738	104%		
50-3	48.815	106%		
50-4	47.917	104%		
50 Average	47.655	104%		
STDEV	1.108			
100-1	94.851	95%		
100-2	96.468	96%		
100-3	103.165	103%		
100-4	94.331	94%		
100 Average	97.204	97%		
STDEV	4.077			
150-1	142.0568	95%		
150-2	144.0240	96%		
150-3	140.6477	94%		
150-4	141.3405	94%		
150 Average	142.0172	95%		
STDEV	1.4563			

HIGH-PURITY

LIBS Analysis

Calibration curve from averaged LIBS data for each sample concentration.

HIGH-PURITY STANDARDS Order online at www.highpuritystandards.com or call toll free 866-767-4771

LIBS and ICP-OES Correlation

LIBS intensities correlated to ICP-OES intensities plotted against precise expected concentrations

HIGH-PURITY STANDARDS Order online at www.highpuritystandards.com or call toll free 866-767-4771

- Introduction
- Objectives
- Experimental Design
- Results
- Method Evaluations and Conclusions
- Future Research

Evaluating methods

Possible sources of error

GH-PUR

•Sample becomes in-homogeneous during spiking/drying process

•Loss of sample during extraction

•Some samples damaged during shipping

Conclusions

- Established proof of concept
- ICP-OES analysis determined the recovery for Be greater than 95%
- Spectra analysis showed significant interferences from Ti, adjustments are required to get accurate results
- Accuracy and precision decrease in samples with higher concentration Be

- Introduction
- Objectives
- Experimental Design
- Results
- Method Evaluations and Conclusions
- Future Research

Future Research

- 1. Include more labs with various LIBS instrument models
- 2. Evaluate the effect of moisture on accuracy of determining Be in soil by LIBS
- 3. Evaluate the effect of soil particle size on accuracy of determining Be in soil by LIBS
- 4. Develop a Be soil CRM amenable to LIBS analysis

Acknowledgements

High Purity Standards

Moven Mututuvari Sarah Harris Andrea Guthrie

Applied Spectra

Army Corps of Engineers

Jay Clausten

